In a new study, researchers have discovered a new method to treat human herpes viruses.
The new broad-spectrum method targets physical properties in the genome of the virus rather than viral proteins, which have previously been targeted.
The treatment consists of new molecules that penetrate the protein shell of the virus and prevent genes from leaving the virus to infect the cell.
It does not lead to resistance and acts independently of mutations in the genome of the virus.
The research was conducted by a team at Lund University in Sweden.
Herpes virus infections are lifelong, with latency periods between recurring reactivations, making treatment difficult.
The major challenge lies in the fact that all existing antiviral drugs to treat herpes viruses lead to rapid development of resistance in patients with compromised immune systems where the need for herpes treatment is the greatest (e.g. newborn children, patients with HIV, cancer or who have undergone organ transplantation).
Both the molecular and physical properties of a virus determine the course of infection.
In the study, the team used a new and unique approach to studying viruses based on their specific physical properties.
The virus consists of a thin protein shell, a capsid, and inside it lies its genome, the genes.
The team has previously discovered that the herpes virus has high internal pressure because it is tightly packed with genetic material.
In the study, they identified small molecules that are able to penetrate the virus and “turn off” the pressure in the genome of the virus without damaging the cell.
These molecules proved to have a strong antiviral effect that was several times higher than the standard treatment against certain herpes types with the drug Aciclovir, as well as against resistant herpesvirus strains where Aciclovir does not work.
The approach prevented viral infection.
Since all types of herpes viruses have a similar structure and physical properties, this antiviral treatment works on all types of viruses within the herpes family.
The team says the drugs available today for combatting viral infections are highly specialized against the viral proteins, and if the virus mutates, which regularly occurs, the drug is rendered ineffective.
However, if scientists succeed in developing a treatment that attacks the physical properties of a virus, such as lowering the pressure inside the herpes virus shell, it should be possible to counter many different types of viral infections within the same virus family using the same drug.
In addition, it would work even if the virus mutates because the mutations do not affect the internal pressure of the herpes virus.
The result of the present study is a first step towards the goal of developing a drug and researchers already have positive preliminary data showing that herpes infection can be stopped for all types of herpes virus including the resistant strains.
One author of the study is Alex Evilevitch, Associate Professor and senior lecturer at Lund University.
The study is published in PLOS Pathogenes.
Copyright © 2020 Knowridge Science Report. All rights reserved.