This treatment could strongly benefit people with brain and spinal cord injuries

In a new study, researchers have discovered a new treatment to dramatically reduce swelling after brain and spinal cord injuries, offering hope to 75 million victims worldwide each year.

The breakthrough in treating such injuries—referred to as central nervous system (CNS) edema—is thought to be hugely significant because current options are limited to putting patients in an induced coma or performing risky surgery.

The research was conducted by an international team of scientists working at Aston University (UK) and elsewhere.

Brain and spinal cord injuries affect all age groups.

Older people are more at risk of sustaining them from strokes or falls, while for younger age groups, major causes include road traffic accidents and injuries from sports such as rugby, US-style football, and other contact games.

The high-profile example of Formula 1 racing driver Michael Schumacher demonstrates the difficulties physicians currently face in treating such injuries.

After falling and hitting his head on a rock while skiing in Switzerland in 2013, Schumacher developed a swelling on his brain from water rushing into the affected cells.

He spent six months in a medically-induced coma and underwent complex surgery, but his rehabilitation continues to this day.

The researchers used an already-licensed anti-psychotic medicine—trifluoperazine (TFP) – to alter the behavior of tiny water channel ‘pores’ in cells known as aquaporins.

Testing the treatment on injured rats, they found those animals given a single dose of the drug at the trauma site recovered full movement and sensitivity in as little as two weeks, compared to an untreated group that continued to show motor and sensory impairment beyond six weeks after the injury.

The treatment works by counteracting the cells’ normal reaction to a loss of oxygen in the CNS—the brain and spinal cord—caused by trauma.

Under such conditions, cells quickly become ‘saltier’ because of a build-up of ions, causing a rush of water through the aquaporins which make the cells swell and exerts pressure on the skull and spine.

This build-up of pressure damages fragile brain and spinal cord tissues, disrupting the flow of electrical signals from the brain to the body, and vice versa.

But the scientists discovered that TFP can stop this from happening. Focusing their efforts on the important star-shaped brain and spinal cord cells called astrocytes, they found TFP prevents a protein called calmodulin from binding with the aquaporins.

Normally, this binding effect sends the aquaporins shooting to the surface of the cell, letting in more water. By halting this action, the permeability of the cells is reduced.

Traditionally, TFP has been used to treat patients with schizophrenia and other mental health conditions.

Its long-term use is associated with adverse side effects, but the researchers said their experiments suggested that just a single dose could have a significant long-lasting impact on CNS edema patients.

Since TFP is already licensed for use in humans by the US Federal Drug Administration (FDA) and UK National Institute for Health and Care Excellence (NICE) it could be rapidly deployed as a treatment for brain injuries.

But the researchers stressed that further work would allow them to develop new, even better medicines based on their understanding of TFP’s properties.

According to the World Health Organisation (WHO), each year around 60 million people sustain a traumatic brain or spinal cord injury and a further 15 million people suffer a stroke.

These injuries can be fatal or lead to long-term disability, psychiatric disorders, substance abuse, or self-harm.

The study is published in the scientific journal Cell.

Copyright © 2020 Knowridge Science Report. All rights reserved.