Researchers discover new antibiotic in tropical forest

Credit: Dmitrii Y. Travin

In a new study, researchers have discovered an antibiotic produced by a soil bacterium from a Mexican tropical forest.

The new finding may help lead to a “plant probiotic,” more robust plants and other antibiotics.

The research was conducted by a team from Rutgers University and around the world.

Probiotics, which provide friendlier bacteria and health benefits for humans, can also be beneficial to plants, keeping them healthy and more robust.

The new antibiotic, known as phazolicin, prevents harmful bacteria from getting into the root systems of bean plants.

The bacterium that produces phazolicin, is an unidentified species of Rhizobium. It was found in a tropical forest in Los Tuxtlas, Mexico, in the soil and roots of wild beans called Phaseolus vulgaris, hence the antibiotic’s name: phazolicin.

Like other Rhizobia, the phazolicin-producing microbe forms nodules on bean plant roots and provides plants with nitrogen, making them grow more robustly than others.

Unlike other Rhizobia, it also defends plants from harmful bacteria sensitive to phazolicin.

The phenomenon could eventually be exploited in beans, peas, chickpeas, lentils, peanuts, soybeans and other legumes.

Using computer and bioinformatic analysis, the scientists predicted the existence of phazolicin and then confirmed its existence in the lab.

They revealed the atomic structure of the antibiotic and showed it is bound to and targets the ribosome, a protein production factory in bacterial cells.

The team hopes to show the bacterium can be used as a ‘plant probiotic’ because phazolicin will prevent other, potentially harmful bacteria from growing in the root system of agriculturally important plants.

Antibiotic resistance is a huge problem in both medicine and agriculture, and continuing searches for new antibiotics are very important as they may provide leads for future anti-bacterial agents.

The scientists found they can modify and control sensitivity, or susceptibility, to the antibiotic by introducing mutations in ribosomes.

One author of the study is Konstantin Severinov, a principal investigator at the Waksman Institute of Microbiology.

The study is published in the journal Nature Communications.

Copyright © 2019 Knowridge Science Report. All rights reserved.