AI could improve prostate cancer diagnosis and treatment

AI could improve prostate cancer diagnosis and treatment

A new study has shown that AI could contribute to a better understanding of how prostate cancer develops, and even improve clinical diagnosis and treatment of the disease.

Every cancer tumor is unique, with characteristics that change over time.

This so-called heterogeneity is due to competing clones within a given tumor, as well as acquired mutations that increase the likelihood of metastases.

In the study, researchers at Sweden’s Science for Life Laboratory have demonstrated how data-driven AI methodology could contribute to a better understanding of heterogeneity in prostate tumors.

The research team used data obtained from nearly 6,750 tissue samples with spatial transcriptomics.

This is a method that combines histology (tissue) with quantitative analysis of the active genes, which has been developed by researchers at SciLifeLab.

The results are published in the scientific journal Nature Communications.

The use of spatial information makes a big contribution to cancer diagnosis and treatment.

Analysis of prostate tumor gene activity in a tissue section dramatically increases the granularity, compared to conventional tumor analysis.

This rich source of information enables unattended AI methods to identify genetic patterns that cannot be seen by the naked eye.

Thus, this massive tissue genetic analysis can serve as a basis for an AI-based clinical evaluation of cancerous tissues and provide insight into gene expression in the tumor’s microenvironment.

Molecular data has been used successfully in the treatment of other forms of epithelial cancers, such as breast cancer. Recent studies show that it can help with prostate cancer too.

Further insights into the mechanisms underlying cancer are crucial for understanding the progression of tumors and how patients respond to treatment.

“We have demonstrated that sampling different parts of the same prostate tumor show remarkable differences on the gene activity level of the cancer cells at each site as well as the surrounding non-tumor cells, such as cells related to inflammation response likely to be linked to the outcome of the patient,” one author says.

“Early remedy of primary prostate cancer is efficient, however differentiating those that will progress to aggressive cases and who will benefit from what treatment is still problematic.”

“We hope that this study makes a significant contribution to these aspects.”

Copyright © 2018 Knowridge Science Report. All rights reserved.